Skip to main content

Dynamic allocation of executors

In case of --conf spark.dynamicAllocation.enabled=true, we get the error on worker:

ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Dynamic allocation of executors requires the external shuffle service.
You may enable this through spark.shuffle.service.enabled.
at org.apache.spark.ExecutorAllocationManager.validateSettings(ExecutorAllocationManager.scala:214)
at org.apache.spark.ExecutorAllocationManager.<init>(ExecutorAllocationManager.scala:135)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:626)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2678)
at org.apache.spark.sql.SparkSession$Builder.$anonfun$getOrCreate$2(SparkSession.scala:942)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:936)
at com.epam.tdm.engine.TdmEngineJobApp$.$anonfun$main$1(TdmEngineJobApp.scala:110)
at scala.util.Using$.$anonfun$apply$1(Using.scala:115)
at scala.util.Try$.apply(Try.scala:213)
at scala.util.Using$.apply(Using.scala:115)
at com.epam.tdm.engine.TdmEngineJobApp$.main(TdmEngineJobApp.scala:110)
at com.epam.tdm.engine.TdmEngineJobApp.main(TdmEngineJobApp.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(
at sun.reflect.DelegatingMethodAccessorImpl.invoke(
at java.lang.reflect.Method.invoke(
at org.apache.spark.deploy.worker.DriverWrapper$.main(DriverWrapper.scala:65)
at org.apache.spark.deploy.worker.DriverWrapper.main(DriverWrapper.scala)


Documentation about Dynamic Execution says the following (bold mine):

There are two requirements for using this feature. First, your application must set spark.dynamicAllocation.enabled to true. Second, you must set up an external shuffle service on each worker node in the same cluster and set spark.shuffle.service.enabled to true in your application. The purpose of the external shuffle service is to allow executors to be removed without deleting shuffle files written by them (more detail described below). The way to set up this service varies across cluster managers:

In standalone mode, simply start your workers with spark.shuffle.service.enabled set to true.

In Mesos coarse-grained mode, run $SPARK_HOME/sbin/ on all slave nodes with spark.shuffle.service.enabled set to true. For instance, you may do so through Marathon.

In YARN mode, start the shuffle service on each NodeManager as follows:

  1. Build Spark with the YARN profile. Skip this step if you are using a pre-packaged distribution.
  2. Locate the spark-<version>-yarn-shuffle.jar. This should be under $SPARK_HOME/network/yarn/target/scala-<version> if you are building Spark yourself, and under lib if you are using a distribution.
  3. Add this jar to the classpath of all NodeManagers in your cluster.
  4. In the yarn-site.xml on each node, add spark_shuffle to yarn.nodemanager.aux-services, then set yarn.nodemanager.aux-services.spark_shuffle.class to
  5. Restart all NodeManagers in your cluster.

All other relevant configurations are optional and under the spark.dynamicAllocation.* and spark.shuffle.service.* namespaces. For more detail, see the configurations page.

Reference Link: